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Abstract—Collaborative spectrum sensing has been recognized
as a promising way to ameliorate the sensing performance in
cognitive radio networks. Unfortunately, it also introduces some
system overhead to users, and as a result some selfish secondary
users might be unwilling to contribute to collaborative spectrum
sensing. In this paper, we propose a new selfishness model in
cluster-based collaborative spectrum sensing, which is referred
to Overclaim Selfishness (OS). An OS group may gain benefit by
sharing nominally equal but actually much less sensing reports
than it declares. To deal with this problem, we propose an
Overclaim Selfishness Detection Scheme (OSDS) to detect the
potential OS groups. We find that a single secondary user
tends to have one special type of sensing reports correlated
with his physical location, thus the cluster number estimated
by OSDS should be no much less than the number of users
the group contains. Further, we adopt an incentive scheme to
stimulate rational groups to behave honestly. Finally, a real world
experiment is adopted to demonstrate the effectiveness of our
proposed scheme OSDS.

Keywords – Cluster-Based Collaborative Spectrum Sensing,
Overclaim Selfishness, Selfishness Detection, Incentive Scheme

I. INTRODUCTION

The dramatic increase of wireless applications has high-

lighted the scarcity of available spectrum resource and mo-

tivated the concept of cognitive radio, which is proposed to

improve the efficiency of current spectrum utilization [1]. By

applying the technique of cognitive radio, secondary users

(SUs) are allowed to have dynamic spectrum access to licensed

channels when primary users (PUs) are absent, which is very

different from the traditional fixed allocation paradigm.

In a Cognitive Radio Network(CRN), one of the major

challenges for SUs is how to conduct precise spectrum sens-

ing. The performance of generally used schemes for primary

transmitter detection (energy detection, feature detection etc.

[2]) degrades severely when wireless channel experiences

fading or shadowing. Recent research shows that collaborative

spectrum sensing could significantly improve the sensing

performance by exploiting the spatial diversity [3]. Cluster-

based collaborative sensing is regarded as one typical way. As

shown in [4], a typical clustered-based collaborative spectrum

sensing could be described as follows: the SUs will interact

to form collaborating clusters, and, the sensing reports within

and among different clusters could be propagated via peer-to-

peer manner until they converge to a unified decision on the

presence or absence of PUs by iterations. In practice, these

clusters may be operated by different WhiteFi Access Points

[5] or Wireless Service Providers [6].

Most of the existing works assume that all SUs are ready to

contribute to collaborative spectrum sensing. This assumption,

however, might be easily violated in the presence of rational

users, who may choose to save their precious resources (e.g.

energy, transmission time, or even energy detectors), but,

at the same time, will still enjoy the sensing results from

others. Such kind of selfish behavior may seriously degrade

the performance of collaborative spectrum sensing, thereby

attracting some researchers to explore incentive schemes from

the perspective of game theory to stimulate SUs to cooperate

with each other in a good manner.

In [7], the incentive issue for cooperative spectrum sensing

has been firstly studied. Song et al. model collaborative

sensing as an N-player horizonal infinite game, and apply

two strategies in the scenarios of ignoring and considering

uncertain collisions in wireless channels respectively. In [8],

an evolutionary game has been adopted to develop the best

cooperation strategy for SUs. Wang et al. analyze behavior

dynamics of SUs, and then prove that the behaviors of SUs

will finally converge to an evolutionary stable strategy. Both

of these two works assume that selfish behaviors could be

detected immediately by their neighbors.

However, selfishness detection remains to be one of the

major challenges for thwarting selfish behaviors in CRN.

Different from traditional ad hoc networks, in which the

selfish behaviors such as packet-dropping could be easily

observed and detected by neighbor nodes, a selfish user in

CRN could pretend to be a good one by sharing a dummy or

slightly modified sensing report based on real sensing reports

forwarded from others. This problem will be more challenging

in a clustered CRN if the SUs collude to form a selfish cluster,

within which some SUs could pretend to be good users with

the help of other normal ones. Thus the colluding cluster

will generate more sensing reports including both fake and

real ones and claim all of them are authentic. Such kind of

selfishness will decrease other clusters’ sensing performance

and therefore violates the stipulate equivalent exchange in
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cluster-based collaborative spectrum sensing. We coin such

kind of new selfish behavior as Overclaim Selfishness (OS).

The existing works on filtering malicious sensing reports [9]

[10] may not work well for OS since users who conduct OS do

not seek to change the aggregating results but only to disguise

their behaviors of free-riding.

To address this problem, we propose an Overclaim Self-

ishness Detection Scheme (OSDS). OSDS is motivated by an

observation that, from the classification point of view, the SU

at a certain location will have one “type” of sensing reports,

which forms one data cluster correlated with his physical space

[5] [9] [11]. Since the sensing reports of each “type” follow

a certain Gaussian distribution, thus we utilize the Gaussian

Mixture Model (GMM) [12] to classify the sensing reports

and get the number of data clusters. To avoid confusion of the

concept between the user cluster and the data cluster classified

by GMM, we will call “user cluster” as group in the remaining

of this paper. The attacker whose data cluster number is much

smaller than it claims will be regarded as a selfish group. Since

punishing a selfish group without affecting others is impossible

in distributed CRN [7], we also introduce an incentive game

to stimulate rational groups to behave honestly.

The contribution of this paper is summarized as follows.

1) To the best of our knowledge, this is the first work dis-

cussing group selfishness of cluster-based collaborative

spectrum sensing in CRN.

2) Different from former works indicate [7] [8], this new

kind of selfishness is hard to detect. Thus we propose

a novel selfishness detection method based on GMM.

Also, we introduce an incentive scheme in the new

scenario to stimulate rational groups to contribute to the

cluster-based collaborative spectrum sensing.

The paper is organized as follows: we model our system in

Section II. Both OSDS and an incentive scheme are proposed

in Section III. Experimental results of OSDS are shown in

Section IV. We conclude this paper in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we would briefly introduce our system model

as well as some preliminaries about cluster-based collaborative

spectrum sensing and Gaussian Mixture Model.

A. Cluster-Based Collaborative Spectrum Sensing

In this paper, we consider a distributed CRN in which each

SU is equipped with an energy detector. As existing works

mentioned [9] [11], the PUs considered here are TV towers

whose ON/OFF status are independent with each other. The

accuracy of judging an incumbent’s presentence or absence is

guaranteed by the collaborative spectrum sensing among SUs.

We adopt soft decision which requires SUs to report the sensed

RSS values of targeted spectrum in each time slot, i.e. 2s [2].

In a distributed CRN, the SUs in a close proximity will join

together as a group.

However, the number of SUs in a single group may not be

enough to make a precise decision of PU’s status. Furthermore,

shadowing and fading in a particular region may degrade the

����������	
���

Fig. 1. the Cluster-based Collaborative Spectrum Sensing Architecture

performance of spectrum sensing significantly. As shown in

Fig.1, the proximity of Group 1 is shadowed by the obstruc-

tion, therefore all the SUs in Group 1 will get wrong sensing

results which may lead to a severe interference with the PU

unintentionally. Therefore, cluster-based collaborative sensing

is proposed in [2] and [4]. The groups first exchange their

collected sensing reports with each other, then combine those

collected sensing results to determine the spectrum availability,

which is shown in Fig.1.

B. Threat Model

Cluster-based cooperation could overcome the problem of

shadowing and fading in a particular region, but it also

introduces a new threat which has not been considered by

other researchers. Normal SUs and free-riders in a group

who share some common interests could cheat other honest

groups’ sensing reports as conspirators, which is different

from the individual free-rider [7]. In particular, an SU who

performs spectrum sensing could forward his sensing report

to free-riders, then the free-riders pretend to be normal SUs

by submitting the forwarded sensing reports. By doing this,

a selfish group contributes much less than it should do to

collaborative sensing. If there is no proper method thwarting

such misbehavior, the popularity of OS groups would largely

degrade the cooperative sensing performance.

In this paper, we assume our considered group consists of η
SUs, and only γ of them really perform the spectrum sensing,

where γ ≤ η, so the other η − γ SUs are free-riders. And we

define this threat as Overclaim Selfishness (OS) attack which

could be launched in two ways:

• Sensing Report Duplication (SRD) Attack: In each time

slot, a free-rider duplicates the sensing report from an-

other SU and adds a Gaussian white noise N (0, δ20) in

each channel to generate a new sensing result1. We denote

this attack as (γ, η) SRD attack.

• Sensing Report Modification (SRM) Attack: In each time

slot, a free-rider duplicates a sensing report generated

in SRD attack, then modifies 100σ% channels with

each channel i substituted by a random variable from

a Gaussian distribution N (μ′
i, δ

′2
i ), where μ′

i should be

1To avoid being detected, a smart free-rider cannot duplicate the exact
sensing data forwarded by others
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in a reasonable range. The probability σ is fixed and the

channels to be modified are predetermined. We denote

this attack as (γ,η,σ) SRM attack.

Furthermore, we don’t consider malicious behaviors which

have already been solved by other works [9] [10], and the OS

attack is different from the malicious attack in two ways:

1) A malicious user seeks to change the aggregating result,

while a selfish user seeks to enjoy free sensing results.

2) A malicious user will modify his sensing reports to a

large extent while a selfish user just duplicates or slightly

modifies others’ forwarded sensing reports.

C. Gaussian Mixture Model

The sensing reports of a certain SU follow a Gaussian distri-

bution, thus we utilize Gaussian Mixture Model to classify the

sensing reports in our proposed detection scheme. A Gaussian

Mixture Model [12] is a weighted sum of M component

Gaussian densities as given by the equation:

p(�x|λ) =
M∑
k=1

wkN (�x|μk,Σk) (1)

where �x is a multi-dimensional vector; wk is the mixture

weight, and
∑M

k=1 wk = 1; N (�x|μk,Σk) is the component

Gaussian density (multivariate Gaussian function) with mean

vector μk and covariance matrix Σk. In order to analyze these

components, we should estimate the parameter λ of this model:

λ = {wk, μk,Σk}, k = 1, 2, · · · ,M .

Generally, the algorithm of Expectation Maximization (EM)

is a popular way to obtain the parameter of GMM. The EM

algorithm is basically a kind of maximum likelihood estima-

tion method, which could maximize the estimation likelihood

of GMM [12]:

ln p(X|λ) =
N∑

n=1

ln {
M∑
k=1

wkN (�x|μk,Σk)} (2)

where X is a sequence of N vectors X = {�x1, · · · , �xN}. By

executing EM algorithm iteratively, the estimated parameter λ̂
will tends to make the training data more likely to happen in

the prediction of GMM [12].

III. PROPOSED SCHEME

In this section, we first discuss the basics of our scheme,

then propose our Overclaim Selfishness Detection Scheme

which aims to detect the selfishness in cluster-based collabo-

rative spectrum sensing, and finally adopt an incentive scheme

to stimulate rational groups to behave honestly.

A. Basics

The spectrum sensing result of a channel can be described

as [13]:

rik ∼
{

N (N0,
N2

0

M ) H0

N (P i
k +N0,

(P i
k+N0)

2

M ) H1

(3)

where rik is an SU ui’s RSS value over the kth channel. H0

denotes the channel is idle, and H1 denotes the channel is

busy. P i
k is ui’s received signal power for spectrum k, and

M is the signal sample number. N0 is the noise power. Thus

no matter a channel k is idle or not, for each SU, the RSS

value of this channel will always follow a normal distribution

which could also be denoted as rk ∼ N (μk, δ
2
k), where μk

is the mean value and δk is the standard variance. According

to the property of normal distribution, we could get following

lemma:

Lemma 1 An SU’s sensing report R = {r1, r2, · · · , rn}
follows a multi-dimensional normal distribution N (�μ,Σ),
where �μ = (μ1, μ2, · · · , μn), and Σ is a diagonal matrix

diag(δ21 , δ
2
2 , · · · , δ2n).

Proof: See Appendix A.

According to Lemma 1 and equation (1), the sensing reports

submitted by all η SUs of a group should follow a Gaussian

Mixture Model. But the sensing reports slightly modified

and submitted by free-riders can still pretend to be real and

legitimate, according to the following lemma:

Lemma 2 The new sensing report generated from SRD at-

tack follows a multi-dimensional normal distribution N (�μ,Σ+
δ20I), where �μ and Σ are the same with Lemma 1, I is

a n-dimensional unit matrix diag(1, 1, · · · , 1) and δ0 is the

variance of the added Gaussian white noise. The correlation

between the new sensing report and the original sensing report

is ( δ1√
δ21+δ20

, · · · , δn√
δ2n+δ20

).

Proof: See Appendix B.

Lemma 2 implies that a new sensing report generated from

SRD attack still follows a multi-dimensional Gaussian distri-

bution, and it is the similar with the SRM attack. If a free-rider

bounds the maximal correlation max{ δi√
δ20+δ2i

}(i = 1, · · · , n)
smaller than a predetermined boundary, the modified sensing

reports will not be distinguished effectively by a malicious

behavior detection method.

B. Overclaim Selfishness Detection Scheme

Overclaim Selfishness Detection Scheme (OSDS) is pro-

posed to detect the selfishness in cluster-based collaborative

spectrum sensing. The basic idea of OSDS is based on the fact

that a classification method could aggregate the sensing reports

which share a high shadowing correlation, i.e. higher than 0.3
[2], and it is also inspired by the observation that the spatial

diversity exists in the sensing data [5], which means the SUs

in different locations, even though within a close proximity,

will have different sensing results with shadowing correlation

small enough to be distinguished. This observation has been

proved by both [5] and [11]. OSDS is based on GMM which

could be solved by EM algorithm.

According to Lemma 1, if we assume, the shadowing

correlation [2] between any two locations is small enough, an

ideal result of GMM classification should divide the sensing

reports into different Gaussian distributions. Since each SU

submits his sensing report in every time slot, the quantity

of each SU’s sensing reports should be the same. Thus the

mixture weight wj(j = 1, 2, · · · ,m) of GMM should be close

to 1
m . But if the sensing reports include free-riders’ SRD or
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SRM attack reports, the classification result will reveal the

selfishness, because the mixture weight of some data clusters

will be close to zero, and some will be much larger than 1
m .

Thus, when we count the total number of all the data clusters,

we will dismiss the data cluster with quite a small weight.

Further, since the estimation likelihood of GMM is super-

linear shown as equation (2) and the approximate algorithm

EM may not predict the exact result of a GMM, which may

lead to extremely high false positive and false negative rate,

we will combine the data clusters whose centers are close

to each other to exclude the false positive/negative incurred

by EM algorithm. If μi and μj of two data clusters are

close enough, which means ‖μi − μj‖ ≤ ε, where ε is

a predetermined threshold for the components, these two

data clusters will be determined belonging to a same data

cluster. Thus if the classification result includes η Gaussian

distributions as same as a group claims, the group is judged

as honest, or the classification result will have less than η
Gaussian distributions, then it will be judged as a selfish group.

This is the ideal result of a simple classification approach,

but our experiment result doesn’t support this conjecture. The

reason is that the inherent shadowing correlation in a close

proximity and the spatial diversity in a relative large range

are bounded if the correlation threshold has been given. For

example, we predetermine a shadowing correlation threshold

which is 0.3 [2], and the shadowing correlation is c = e−αd.

The minimal distance dmin could be estimated based on the

predetermined shadowing correlation threshold [2]. Then the

maximal possible classification number Nc could be roughly

estimated (the estimation method is shown in our full paper

due to the page limitation). Thus we need to estimate Nc of a

group in a proximity first, then if the number of data clusters

in the classification result is larger or equal to Nc, the group

is determined to be honest, otherwise, it is a selfish group.

The OSDS algorithm is shown in Algorithm 1.

Algorithm 1: OSDS

Execute EM algorithm to get μi, i = 1, 2 · · · η of GMM

for each data cluster with μi do
for any other data cluster with μj do

if ‖μi − μj‖ < ε then
combine these two data clusters as one

end if
end for

end for
count the total number of all the combined data clusters m̂.

estimate the threshold Nc

if m̂ < Nc then
It is a selfish group.

else
It is an honest group.

end if

Based on OSDS, we further propose an incentive scheme to

rule out the selfishness by bounding the benefit of the cluster-

based collaborative spectrum sensing.

C. Incentive Scheme

In distributed CRN, even if most of OS attacks could be

detected by OSDS, it is impossible to punish the OS attacker

directly because punishment will also affect other honest

groups [7]. For the sake of maintaining a good cooperation,

in this section, we propose an adaptive incentive scheme to

stimulate rational groups to behave honestly.

In the cooperation, the collaborator could choose to be an

honest group, or an OS attacker. And we assume every group is

able to launch OSDS scheme to detect potential selfish groups.

For the simplicity of derivation, here we model the problem

as 2-player infinitely repeated game, (multi-players’ gaming

result could be obtained similarly)which is shown as follows:

Definition 1: The Collaborative Spectrum Sensing Game is
the game:

G = 〈N, {ai,t}, {ui,t}〉
• N = 1, 2 is the set of players

• ai,t ∈ {0, 1}, is the action of player i in round t. 0 means

the player launches OS attack, and 1 means the player

behaves honestly.

• ui,t is the utility of player i in round t.

Without a proper strategy, the game will end up with no

honest groups, because the Nash Equilibrium of the game is

that every group chooses to violate an honest cooperation. In

addition, a simple tit for tat strategy does not fit our game for

the possibility of false detection by applying OSDS. Once a

group is wrongly detected to be a selfish one by the other, the

cooperation will end forever. As a result, we deploy a Carrot-
and-Stick strategy [7], which is a self-adaptive one and could

be defined as follows:

Definition 2: In a Carrot-and-Stick strategy, player i has
the following actions:

• ai,1 = 1
• ai,t+1 = 0 if ai,t = 1 and a−i,t = 0
• ai,t+1 = 1 if ai,t = 0 and a−i,t = 0

Cooperation stops if there is any violation and continues

if they both deviate. And it is adaptive to the occurrence of

incorrectly identifying an honest group as a selfish one (or

called false positive) due to its ability of recovery.

Before discussing how Carrot-and-Stick strategy influences

our game, we would firstly define a few parameters we will

use. First, we normalize the benefit from cooperation as 0
when the other group launches OS attack, and we assume the

benefit from fully cooperation is b. The corresponding cost for

the honest group is c, and for the selfish group is d, where d <
c. The probability of false positive(defined above) is supposed

to be pf , while the probability of false negative (mistaking a

selfish group to be an honest one) is pm. And finally we have

Lemma 3: With 2 player Carrot-and-Stick strategy for

cluster-based collaborative spectrum sensing, robust cooper-

ation could be achieved when

b >
(1 + pf )(1− pm)X × c− (1− pmσ)Y × d

(1− pm)X − (1− pmσ)Y
(4)
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(d) False positive/negative rate varies
with the number of data sample M

Fig. 2. The experimental results of OSDS under different parameters.

X = (1 + σ − pmσ), Y = (pfσ + pfσ
2 + 1)

Proof: See Appendix C.

Lemma 3 implies when the benefit from fully cooperation

satisfies the condition of Lemma 3, an effective incentive

scheme will be achieved among rational groups.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results are shown to demon-

strate the effectiveness of OSDS.

A. Experiments Setup

Our experiment is set up at the Building of Electronic

Information and Electrical Engineering School located in

Shanghai Jiao Tong University, Minhang Campus. We use

Universal Software Radio Peripheral (USRP) with a TVRX

daughterboard (50 MHz to 860 MHz Receiver) and a wide

band antenna (70 MHz to 1000 MHz) to detect TV broadcasts

(channels of 662−670MHz,750−758MHz and 798−806MHz)

of 10 sampled regions at the building. The sensing reports

in each sampled location follows a Gaussian distribution

statistically, and differs from other locations which verifies

the experiment result of [9] and [11].

B. Simulation Results

Utilizing the sensing data obtained in the real world exper-

iment, we simulate a series of SRD and SRM attacks with

different parameters to demonstrate how well our proposed

OSDS could filtering OS attacks, and to analyze how these

parameters will affect the performance of OSDS.

Firstly we estimate the shadowing correlation threshold

Nc of the three channels we scanned, and Nc is 9 in this

150m×150m region. Given the threshold Nc and the claimed

number η, we could get the false positive and false negative

rate of OSDS as shown in Fig. 2.(a). The curve of the honest

behavior reflects the false positive rate, and the others show

the false negative rate. As we will see when Nc = 9, both

false positive and false negative rate are lower than 10%,

which is the best tradeoff of OSDS. This verifies the estimation

result and substantiates OSDS could achieve a good selfishness

detection performance.

In SRM Attack, the percentage of chosen modified channels

will affect the false negative rate. In Fig.2.(b), we could see

false negative rate of the three curves respectively holding

γ = 5, 6, 7 remain low when σ is restricted within 0.1. With

a higher rate of modified channels a SU will be detected as a

malicious user, which is not considered in this paper. So we

can define the boundary between selfishness and maliciousness

as σ = 0.1.

Fig.2.(c) shows the relationship between γ and the false

negative rate. It means that when a claiming number of SUs

η = 10, the less the number γ of reals sensing reports

there are, the better performance the OSDS will achieve. We

could see that when γ ≤ 7, the OSDS could achieve almost

100% selfishness detection rate. Please notice that under the

circumstance when γ = 9, a sufficient location diversity

has already been achieved for the correlation threshold is

estimated to be Nc, even though the selfish group containing

1 free-rider is not detected. OSDS could tolerate this slightly

selfish behavior which will not decrease the performance of

collaborative spectrum sensing.

Fig.2 (d) implies that the number of data sample used

in OSDS affects little on the performance of OSDS when

M ≥ 100 for the false positive and false negative rate fluctuate

slightly. Therefore a data sample with the number of M = 100
is recommended to launch OSDS, and if the time slot t = 2s,

200s is needed for clusters to launch OSDS every time.

V. CONCLUSION

In this paper, we identify a new selfish model in cluster-

based collaborative spectrum sensing between cooperating

groups, which is named as Overclaim Selfishness. To address

OS attack, we propose an Overclaim Selfishness Detection

Scheme to detect the potential selfish groups. Further, in order

to stimulate rational groups to behave honestly, we propose

an incentive game. The effectiveness and the efficiency of

OSDS are also demonstrated by our experiment. And our

future works will focus on a single user’s selfish behavior

detection in collaborative spectrum sensing.
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APPENDIX

A. Proof of Lemma 1

The PU we considered in this paper are presumed to be

independent with each other, so for each rk ∼ N (μk, δ
2
k) must

be independent with rj , j 
= k. The characteristic function of

a sensing report R is:

ϕR=(r1,r2,...,rn)(�u) = Πn
k=1ϕrk(uk)

= Πn
k=1 exp (iμkuk − 1

2
δ2ku

2
k)

It is the characteristic function of multi-dimensional Gaussian

distribution N (�μ,Σ), where �μ = (μ1, μ2, · · · , μn) and Σ
is a diagonal matrix diag(δ21 , δ

2
2 , · · · , δ2n). According to the

bijection property of characteristic function [14] that FX1 =
FX2 ⇔ ϕX1 = ϕX2 , where FX is the distribution function of

the random variable X . Therefore R ∼ N (�μ,Σ)

B. Proof of Lemma 2

Without loss of generality, we consider a single channel i
of the sensing report which follows a Gaussian distribution

N (μi, δ
2
i ). Since the noise n of sensing report added by free-

rider follows another Gaussian distribution N (0, δ20) in SRD

attack. Thus the new sensing report of a channel i follows

N (μi, δ
2
i + δ20). Then similar with the proof of Lemma 1, the

new sensing report still follows a multi-dimensional Gaussian

distribution N (�μ,Σ+ δ20I).
The correlation a single channel i between the new sensing

report r′i and the original sensing report ri is:

corr =
Cov(r′i, ri)√
D(r′i)D(ri)

=
Cov(ri + n, ri)

δi
√
δ2i + δ20

n is the Gaussian noise added by free-riders, according to the

property of covariance,

corr =
Cov(ri, ri) + Cov(n, ri)

δi
√

δ2i + δ20
=

δi√
δ2i + δ20

here Cov(n, ri) is 0 because we assume the added noise n
is independent with the sensing result ri. Thus the correlation

between the new sensing report and the original sensing report

is ( δ1√
δ21+δ20

, · · · , δn√
δ2n+δ20

).

C. Proof of Lemma 3

Firstly we adopt the average discounted payoff of an

infinitely repeated game as Ui = (1−σ)
∑∞

t=1 σ
t−1ui,t, where

σ ∈ (0, 1) is the discount factor. Then we assume the average

discounted payoff of group i as Ui when cooperates while Ûi

when it deviates.

Thus in the 1st stage, if group i chooses to behave honestly,

it might be detected to be the attacker. Then, the game results

could be shown as in TABLE.I.

t ait a−it uit

1 1 1 b-c
2 1 0 -c
3 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

TABLE I

We could obtain the overall payoff matrix in this case as

U∗
i = (1−σ)(b−c−σ×c+0+σ3× Ui

1−σ ). In the complementary

case, that is to say, this group is detected to be honest, the

payoff is U∗∗
i = (1 − σ)(b − c + σ × Ui

1−σ ). Therefore, the

expected overall payoff could be shown as Ui = pf × U∗
i +

(1− pf )× U∗∗
i . By solving the above equation, we have

Ui =
b− (1 + σpf )c

1 + σpf (1 + σ)

On the other hand, the game result is given when the group

chooses to launch OS. We assume the misbehavior is detected

in the kth stage of the game. Because the probability of first

detection of the misbehavior in kth stage is pk−1
m (1−pm), the

average discounted payoff could be obtained similarly:

Ûi = (1− pm)((1− σ)(b− d)
∞∑
k=1

pk−1
m k+Ui

∞∑
k=1

pk−1
m σk+1)

The game achieves full cooperation if and only if Ûi < Ui. We

could get the result in Lemma 3 by solving this inequality.
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